首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46886篇
  免费   4739篇
  国内免费   3323篇
电工技术   1300篇
综合类   4410篇
化学工业   4700篇
金属工艺   6658篇
机械仪表   3256篇
建筑科学   8214篇
矿业工程   2799篇
能源动力   2107篇
轻工业   1097篇
水利工程   2640篇
石油天然气   2314篇
武器工业   379篇
无线电   3658篇
一般工业技术   6504篇
冶金工业   2078篇
原子能技术   328篇
自动化技术   2506篇
  2024年   95篇
  2023年   680篇
  2022年   1146篇
  2021年   1502篇
  2020年   1523篇
  2019年   1331篇
  2018年   1223篇
  2017年   1637篇
  2016年   1769篇
  2015年   1803篇
  2014年   2763篇
  2013年   2791篇
  2012年   3413篇
  2011年   3781篇
  2010年   2708篇
  2009年   2776篇
  2008年   2594篇
  2007年   3100篇
  2006年   2980篇
  2005年   2347篇
  2004年   1999篇
  2003年   1881篇
  2002年   1541篇
  2001年   1342篇
  2000年   1208篇
  1999年   993篇
  1998年   730篇
  1997年   630篇
  1996年   504篇
  1995年   457篇
  1994年   355篇
  1993年   297篇
  1992年   243篇
  1991年   177篇
  1990年   157篇
  1989年   132篇
  1988年   98篇
  1987年   53篇
  1986年   36篇
  1985年   23篇
  1984年   29篇
  1983年   22篇
  1982年   20篇
  1981年   13篇
  1980年   12篇
  1979年   20篇
  1976年   2篇
  1975年   1篇
  1959年   7篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
12.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
13.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
14.
Referring to the total surface existing in wheat dough, gluten–starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle–polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten–starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten–starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten–starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.  相似文献   
15.
曾敏  王华  邹均名  李文斌 《中国造纸》2022,41(4):102-106
本文从内表面防结露、夏季隔热2个角度出发,对夏热冬冷及夏热冬暖地区代表城市采用的钢结构屋面的保温(隔热)层厚度进行计算分析。研究表明,在夏季室内温、湿度达到某一状态时,隔热厚度要大于冬季防结露的保温厚度。因此,夏热冬冷地区的造纸车间钢屋面保温层厚度应按夏季隔热计算确定,并进行冬季防结露验算;夏热冬暖地区按照冬季防结露计算即可。  相似文献   
16.
《Ceramics International》2022,48(22):32696-32702
Aluminum nitride (AlN) ceramics are becoming cutting-edge materials for electronic information and communication. However, raw AlN hydrolyzed rapidly, and the high storage costs of this material prevent widespread application. In this study, raw AlN was modified by boric acid (H3BO3) at 30 °C to enhance hydrolysis resistance. Transmission electron microscope (TEM), X-ray diffraction (XRD), the magic angle spinning nuclear magnetic resonance (27Al-MAS-NMR and 11B-MAS-NMR), and the fourier transform infrared spectrometer (FTIR) were used to characterize the powder before and after treatment, and the mechanism of hydrolysis resistance was determined. Modification with 0.1 M boric acid did not change the crystal phase of the AlN particles. The modified powder did not hydrolyse at 90% humidity and 70° Celsius. In the presence of boric acid, a network structure of B–O–B linkages ([BOn], n = 3 or 4) formed that was connected to the AlN core via chemical bonds of B–N–Al and B–O–Al. The protective 6 – 10 nm-thick layer that formed on the surface of the AlN crystal, prevented attack by water molecules and hindered the hydrolysis of aluminium nitride. This study provides an alternative means of preparing anti-hydrolysis AlN powders.  相似文献   
17.
基于深度学习的图像超分辨率算法通常采用递归的方式或参数共享的策略来减少网络参数,这将增加网络的深度,使得运行网络花费大量的时间,从而很难将模型部署到现实生活中。为了解决上述问题,本文设计一种轻量级超分辨率网络,对中间特征的关联性及重要性进行学习,且在重建部分结合高分辨率图像的特征信息。首先,引入层间注意力模块,通过考虑层与层之间的相关性,自适应地分配重要层次特征的权重。其次,使用增强重建模块提取高分辨率图像中更精细的特征信息,以此得到更加清晰的重建图片。通过大量的对比实验表明,本文设计的网络与其他轻量级模型相比,有更小的网络参数量,并且在重建精度和视觉效果上都有一定的提升。  相似文献   
18.
According to the International Energy Agency, only a small part of the full potential of biomass energy is currently used in the world. The annual amount of agricultural waste in the Russian Federation is estimated at about 152 million tons, and the energy potential of animal waste is 201 PJ/year. Anaerobic digestion is an efficient method of converting organic waste into renewable energy sources. Previously, the positive effect of pretreatment of various organic feedstocks in vortex layer apparatus (VLA) on the characteristics of anaerobic digestion and energy efficiency was shown. Currently, there is a significant interest in the world in obtaining biohydrogen from organic waste using the dark fermentation (DF) process. During pretreatment in the VLA, the iron working bodies are abraded and iron particles are introduced into the feedstock of the DF reactor. This may have a positive effect on the production rate and yield of hydrogen, which has not been previously studied. This work is aimed at evaluating the possibility of using the VLA as a method for pretreatment of a dark fermentation feedstock for the intensification of biohydrogen production. To achieve this goal, an experimental setup was constructed. It consisted of a 45 L DF reactor, a VLA and a process control system to collect data on the DF process parameters every 5 min. At a hydraulic retention time in the DF reactor of 24 h and in the VLA of 30 s, the hydrogen content in the biogas increased from 51.1% to 52.2%. At the same time, the pH increased from 3.85 to 4.8–4.9, and the hydrogen production rate increased by 16% to 1.941 L/(L day). The hydrogen yield was 80.9 ml/g VS. Thus, pretreatment of the feedstock in VLA can be an effective way to intensify the DF process; however, further study of the VLA operating modes is required in order to optimize the concentrations of iron particles introduced into the feedstock for the most efficient continuous production of dark fermentative biohydrogen.  相似文献   
19.
为了解破碎围岩分别采用锚杆支护、锚喷支护以及锚喷+锚索耦合三种支护方式下的支护效果,进而为破碎围岩巷道选择合理的支护方式提供参考。通过借助FLAC3D软件建立数值模型,分析不同支护条件下的破碎围岩巷道位移量、应力分布以及塑性区的时空演化特征。结果表明,采用锚喷+锚索耦合支护时,可以较好的控制巷道围岩的位移量、减小应力集中效应、缩小塑性区的影响范围。  相似文献   
20.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号